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Variance-reduced Monte Carlo solutions of the Boltzmann
equation for low-speed gas flows: A discontinuous

Galerkin formulation
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SUMMARY

We present and discuss an efficient, high-order numerical solution method for solving the Boltzmann
equation for low-speed dilute gas flows. The method’s major ingredient is a new Monte Carlo technique
for evaluating the weak form of the collision integral necessary for the discontinuous Galerkin formulation
used here. The Monte Carlo technique extends the variance reduction ideas first presented in Baker
and Hadjiconstantinou (Phys. Fluids 2005; 17, art. no. 051703) and makes evaluation of the weak form
of the collision integral not only tractable but also very efficient. The variance reduction, achieved by
evaluating only the deviation from equilibrium, results in very low statistical uncertainty and the ability
to capture arbitrarily small deviations from equilibrium (e.g. low-flow speed) at a computational cost that
is independent of the magnitude of this deviation. As a result, for low-signal flows the proposed method
holds a significant computational advantage compared with traditional particle methods such as direct
simulation Monte Carlo (DSMC). Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interest in numerical solution of the original Boltzmann equation for dilute gas flow [1, 2] has
recently been revived in connection with small-scale science and technology [3]. In this regime,
characteristic flow scales are comparable to (or smaller than) the molecular mean free path, and
as a result, modeling beyond the Navier–Stokes level of description is often required. Numerical
solution of the Boltzmann equation is a formidable task due to the high dimensionality of the
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molecular distribution function and the difficulty associated with the evaluation of the collision
term (a high-dimensional integral) of this equation [1, 2]. For these reasons, and because interest in
numerical solutions of the Boltzmann equation was for a long time focused on description of high-
speed flows studied in connection with flight in the upper atmosphere, Monte Carlo approaches
have prevailed over direct numerical solutions. In particular, the prevalent Boltzmann solution
method is currently a stochastic particle simulation method known as direct simulation Monte Carlo
(DSMC) [4]. Unfortunately, DSMC becomes very inefficient for the low-signal (e.g. low-speed)
flows typical of micro- and nano-scale applications [3, 5] due to the uncertainty associated with
the statistical sampling of hydrodynamic properties from particle data. As an example, consider
the flow velocity as quantified by the local Mach number Ma: it can be shown [6] that to retain
a constant signal to noise ratio in the flow velocity as this decreases (Ma→0), the computational
cost of DSMC increases as Ma−2. In other words, this limitation is sufficiently severe to make
noise-free simulation of low-signal flows very expensive and in some cases intractable.

Recently, Baker and Hadjiconstantinou [7] showed that this serious limitation suffered by tradi-
tional Monte Carlo approaches in the limit of small deviation from equilibrium can be addressed
using variance reduction ideas for evaluating the collision integral. In particular, they showed
that by simulating only the deviation from equilibrium, it is possible to construct Monte Carlo
simulation methods that can accurately capture arbitrarily small deviations from equilibrium at a
computational cost that is independent of the magnitude of this deviation. The benefits of variance
reduction were demonstrated in [7] where it was applied to a finite volume formulation of the
Boltzmann equation in which the collision integral was treated as a source term.

The present paper extends this variance reduction approach for evaluating the collision integral
to the weak form of the collision integral and presents an efficient implementation that enables
higher-order solutions of the Boltzmann equation through a Runge–Kutta discontinuous Galerkin
(RKDG) [8] formulation. In the resulting implementation, the collision integral operator evalu-
ation is typically of comparable computational cost to the evaluation of the advection operator,
thus making the application of the discontinuous Galerkin (DG) formulation (and possibly other
sophisticated numerical formulations) to the original Boltzmann equation possible. At the same
time, the variance reduction employed within the formulation endows it with very low statistical
uncertainty—essentially negligible as will be seen later—and the ability to capture arbitrarily small
deviations from equilibrium at a cost that does not scale with the magnitude of this deviation. The
resulting method is thus both efficient and high-order accurate in all dimensions: time, physical
space and velocity space.

The DG method [8, 9] has become a popular finite element approach for obtaining solutions to
hyperbolic equations (or systems of equations) due to its ability to provide high-order solutions
on irregular meshes in several dimensions, while allowing for the solution of problems exhibiting
discontinuities [8, 10]. In our context, it provides a robust framework that can accurately capture
traveling discontinuities in the distribution function—traditionally a weak point of partial differ-
ential equation (PDE)-based methods compared with particle methods‡ for solving the Boltzmann
equation—while endowing the method with considerable efficiency through high-order accuracy
and a formulation that is compatible with variance reduction. Other advantages of the PDE-based

‡Variance-reduced particle formulations akin to DSMC have also been developed [11–15] although in some cases
[11–13] they require particle cancelation which, as shown in [12], introduces a low-order velocity space discretization
that increases the cost and reduces the accuracy of the method. The method by Homolle and Hadjiconstantinou
[14, 15] does not require velocity space discretization and is a viable alternative to the method discussed here.
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approach include simplified application of some boundary conditions and the possibility of direct
steady-state formulations. The latter can provide large computational savings in the collision-
dominated regime, where the time to steady state is very long compared with the kinetic time step
imposed by the advection operator in the unsteady formulation.

The value of the DG formulation for solving the Boltzmann equation has been previously
recognized both in gas dynamics and in other fields, where Boltzmann-like transport equations
need to be solved [16]. However, the computational cost associated with the evaluation of the
weak form of the collision operator for dilute gases has limited previous work to cases where
simplifying/modeling assumptions can be made. We refer here to the work of Dai and Yu [17]
who applied the DG formulation to the BGK model of the Boltzmann equation, and the work
of Cale and coworkers [18] who consider the linear Boltzmann equation§ in conjunction with a
relaxation-time approximation.

The paper is organized as follows: In the next section we provide a brief background on the
Boltzmann equation. In Section 3, we give a brief overview of the DG formulation of the Boltzmann
equation for completeness. We also discuss the Monte Carlo method used to evaluate the weak form
of the collision integral, which enables the efficient use of the DG formulation for the Boltzmann
equation. In Section 4 we present a variety of validation results for both time-dependent and
steady problems in zero or one spatial dimension and three velocity dimensions. Although these
test problems are performed in zero or one spatial dimensions, we note that the collision integral
evaluation approach presented here can be directly applied to higher-dimensional problems without
any modification, while extension of the RKDG treatment of the advection operator to higher
dimensions is standard; in other words, we expect the present method to be directly extendable to
flows in two and three spatial dimensions.

2. BACKGROUND

We consider a dilute monoatomic gas of molecular mass m at a reference temperature T0 and
reference number density n0. The most probable molecular speed is given by c0=√

2kBT0/m,
where kB is Boltzmann’s constant. Let f (r,c, t) be the velocity distribution function [2], where
r=(x, y, z) is the position vector in physical space, c=(cx ,cy,cz) is the molecular velocity vector,
a=(ax ,ay,az) is the molecular acceleration resulting from body forces and t is the time.

In the remainder of the paper, all quantities will be nondimensionalized using the molecular mean
free path¶ �0, most probable molecular velocity c0 and a collision time �0≡√

��0/(2c0). We assume
that a well-defined [2] differential collision cross section � exists such that the (dimensionless)
Boltzmann equation can be expressed as

� f

�t
+

√
�

2
c · � f

�r
+a · � f

�c
=

[
d f

dt

]
coll

(1)

§The linear Boltzmann equation [2] differs significantly from the linearized Boltzmann equation, and is valid for
special applications that do not include the hydrodynamics of a dilute gas of interest here.
¶ In the particular case of a hard-sphere gas of diameter d at number density n0, �0=(

√
2�n0 d2)−1.
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with [
d f

dt

]
coll

(r,c, t)=
√

�

2

∫
c1

∫
�

( f ′ f ′
1− f f1)g�d

2�d3c1 (2)

where c and c1 are the pre-collision velocities, f1= f (r,c1, t), f ′ = f (r,c′, t), and f ′
1= f (r,c′

1, t);
also, g=|c1−c| is the magnitude of the relative velocity vector, and c′,c′

1 are the post-collision
velocities, related to the precollision velocities through the scattering solid angle �. Here, and in
the remainder of the paper, integration in velocity space extends from −∞ to ∞ unless otherwise
stated; similarly, the solid angle integration is over the surface of the unit sphere.

Hydrodynamic quantities are extracted from moments of the distribution function [1, 2, 19]. For
example, the number density is given by

n=
∫

f d3c (3)

while the flow velocity u=(ux ,uy,uz) is given by

ui = 1

n

∫
ci f d

3c (4)

Finally, the components of the stress tensor are given by

Pi j =
∫

(ci −ui )(c j −u j ) f d
3c (5)

3. FORMULATION

Following the approach laid out in [7], we begin by introducing the deviational distribution function,
f d , defined as

f d ≡ f − f MB (6)

where f MB is an arbitrary equilibrium (Maxwell–Boltzmann) distribution. For simplicity, in this
paper we take f MB to be only a function of velocity—that is f MB is chosen to be independent of
physical space and time, thus representing absolute equilibrium. Substituting this definition into
the dimensionless Boltzmann equation, we obtain

� f d

�t
+

√
�

2
c · � f d

�r
+a · � f d

�c
=

[
d f

dt

]
coll

−a · � f MB

�c
(7)

We would like to emphasize that the particular choice of f MB may affect the efficiency (by
affecting the magnitude of f d and thus [7, 20] the resulting statistical uncertainty), but does not
affect the accuracy or applicability of the method. Our particular choice here, primarily motivated by
algorithmic convenience, means that the magnitude of the statistical uncertainty will vary in space
and time as the shape and magnitude of f d varies. Note, however, that in the low-signal problems
considered here, the deviation from absolute equilibrium is small at any point in physical space
and time. As our numerical results confirm, the resulting spatial variation of statistical uncertainty
is small and thus, at present, does not justify the extra algorithmic complexity associated with
selecting the locally optimal f MB= f MB(r,c, t).
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3.1. Discontinuous Galerkin

To obtain the RKDG formulation of the above governing equation, we closely follow the approach
laid out in [8]. We will suppose that our six-dimensional computational domain‖ is divided into
elements denoted by �. We require that for any∗∗ test function v(r,c) defined to be zero outside
of the element �∫

�
v

(
� f d

�t
+

√
�

2
c · � f d

�r
+a · � f d

�c

)
d6�=

∫
�

v

([
d f

dt

]
coll

−a · � f MB

�c

)
d6� (8)

where the integrals extend over the element �. We note that as v is defined to be zero outside of
�, a similar equation also holds when the integrals extend over any part of the entire domain.

We proceed with integration by parts to obtain
∫

�
v
� f d

�t
d6�+

∫
�

v f d
(√

�

2
c ·nr+a ·nc

)
d5�−

∫
�
f d

(√
�

2
c · �v

�r
−a · �v

�c

)
d6�

=
∫

�
v

([
d f

dt

]
coll

−a · � f MB

�c

)
d6� (9)

Here, nr and nc are, respectively, outward-normal vectors of the element in physical and velocity
space and |nr|2+|nc|2=1; � denotes the surface of the element �.

We then define h to be a flux function†† that approximates f d ×[(√�/2)c ·nr+a ·nc]. Addi-
tionally, in the present work, our interest lies in cases where body forces are negligible or not
present; we will thus set a=0 to obtain

∫
�

v
� f d

�t
d6�+

∫
�

vh d5�−
∫

�
f d

√
�

2
c · �v

�r
d6�=

∫
�

v

[
d f

dt

]
coll

d6� (10)

We expand f d (specifically, f d within a single element) and v in terms of our (now taken to
be finite) set of basis functions �i (r,c).

f̂ d =∑
i
f̂ di (t)�i (r,c) (11)

v̂=∑
j

v̂ j� j (r,c) (12)

The functions �i are defined to be nonzero only within a single element. No continuity require-
ments exist between elements, allowing the formulation to capture discontinuities in the solution.
Substituting these expressions into (10) and requiring the equation to hold for any set of coefficients
v̂ j (i.e. any v̂), we obtain

∑
i

� f̂ di
�t

∫
�

�i� j d
6�+

∫
�

� j h d
5�−

√
�

2

∑
i
f̂ di

∫
�

�ic ·
�� j

�r
d6�=

∫
�

� j

[
d f

dt

]
coll

d6� (13)

‖In practice, the computational domain will be of dimension D+3, where D is the problem dimensionality in
physical space.

∗∗Provided integrability requirements are met, see [8].
††This will simply be an upwind flux as our convection term is linear.
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which must hold for all j . Equation (13) defines a system of ordinary equations for f̂ di ; integrating
this in time using a (strong stability preserving [8]) Runge–Kutta method‡‡ gives the time evolution
of f̂ di , and thus f̂ d .

All integrals on the left side of (13) are evaluated using Gaussian quadrature using standard
methods [10]. The shape functions used in this work are tensor products of Legendre polynomials.
We will use the notation pi to indicate that we use polynomials up to (and including) order i
in this tensor product. The use of tensor product shape functions means that a sum-factorization
technique [10] can be used to efficiently evaluate the sums arising from this integration.

3.2. Collision integral formulation

To evaluate the term involving the collision integral in Equation (13) we will use a Monte Carlo
integration technique, which extends the variance reduction ideas proposed in [7] to the present
DG formulation. Specifically, the variance reduction arises from considering only the deviational
distribution function f d (Equation (6)) and the use of importance sampling (see below).

Let us define

I (v)≡
∫

�
v

[
d f

dt

]
coll

d6�=
∫
r

∫
c
v

[
d f

dt

]
coll

d3cd3r (14)

The second equality follows by using the fact that v is taken to be zero outside the element in
question and thus integration over both r and c can extend over all space. Using the properties of
the collision operator [1, 2], and the fact that integration extends over all velocity space we can
write

I (v)=
√

�

4

∫
r

∫
c

∫
c1

∫
�

(v′
1+v′−v1−v) f f1g�d

2�d3c1 d3cd3r (15)

where v1=v(r,c1), v′ =v(r,c′) and v′
1=v(r,c′

1). It is clear that the evaluation of the above 11-
dimensional integral by direct quadrature is prohibitive, especially when one considers that I (� j )

needs to be evaluated for every shape function � j . On the other hand, the Monte Carlo approach
developed below makes this evaluation not only possible but also efficient when coupled with
variance reduction and importance sampling.

Using expression (6), noting that the collision integral for a Maxwell–Boltzmann distribution
is identically zero, and taking advantage of the symmetry in the collision operator [2], we can
express

I (v) =
√

�

4

∫
r

∫
c

∫
c1

∫
�

(v′
1+v′−v1−v)(2 f d f MB

1 + f d f d1 )g�d2�d3c1 d3cd3r

=
√

�

2
�MB,d

∫
r

∫
c

∫
c1

∫
�

(v′
1+v′−v1−v)

f d f MB
1

�MB,d
g�d2�d3c1 d3cd3r

+
√

�

4
�d,d

∫
r

∫
c

∫
c1

∫
�

(v′
1+v′−v1−v)

f d f d1
�d,d

g�d2�d3c1 d3cd3r (16)

‡‡All work presented in this paper uses the three-stage Runge–Kutta method given in [8].
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where we have defined

�MB,d ≡
∫
r

∫
c

∫
c1

∫
�

| f d | f MB
1 d2�d3c1 d3cd3r=4�

(∫
f MB
1 d3c1

)∫
r

∫
c
| f d |d3cd3r (17)

�d,d ≡
∫
r

∫
c

∫
c1

∫
�

| f d || f d1 |d2�d3c1 d3cd3r=4�
∫
r

{(∫
c
| f d |d3c

)(∫
c1

| f d1 |d3c1
)}

d3r (18)

with 4� being the surface area of the unit sphere.
Noting that f d f d1 /�d,d and f MB

1 f d/�MB,d in Equation (16) are normalized probability distri-
bution functions, we can perform importance sampling [20, 21], obtaining

I (v) ≈
√

�

2
�MB,d

1

NMB

NMB∑
i=1

[v′
1,i +v′

i −v1,i −vi ]gi�i sgn( f di )

+
√

�

4
�d,d

1

Nd

Nd∑
j=1

[v′
1, j +v′

j −v1, j −v j ]g j� j sgn( f
d
j )sgn( f d1, j ) (19)

where the set of collision parameters {r,c1,c2,�} are chosen with a probability f MB
1 | f d |/�MB,d in

the first sum and | f d || f d1 |/�d,d in the second (this implies � is chosen with a uniform probability
on the unit sphere in each case).

To implement (13), we must evaluate I (� j ) for all shape functions in all elements. To do this
more efficiently, we note that the cost of evaluating (19) (and thus the cost of this DG approach)
can be reduced significantly because this equation can be evaluated for all shape functions in all
elements using the same set of samples, namely the NMB collision events in the first term and
Nd collision events in the second term. This is achieved by updating the sum only for the cells
containing pre- or post-collision velocities for each collision event. This is possible because the
shape functions are zero outside their associated element, and thus only the elements containing a
pre- or post-collision velocity for a given collision event will be affected by that collision event.
When f d is small, �MB,d 	�d,d ; in such cases, for improved computational efficiency, one could
choose NMB to be much larger than Nd .

We re-emphasize that the above derivation holds for an arbitrary f MB (‘underlying Maxwell–
Boltzmann distribution’). The choice of f MB does not affect the accuracy or applicability of the
method (no approximation has been made), only its efficiency: in general, the smaller the magnitude
of the resulting f d , the greater the degree of variance reduction and the higher the efficiency.

We also note that (19) shows that the action of the collision operator is calculated by sampling
a representative number of ‘collision events’, as in DSMC. One small difference is that, unlike
DSMC where the collision cross section enters as a weighing factor for the collision probability, in
our formulation the collision cross section value directly enters into the numerical value of I (� j ).
Modifying this formulation to mirror the DSMC collision process, i.e. by including g� in the
processes of choosing the Nd and NMB collision events (and thus removing gi�i and g j� j from
the sums) is also possible. The similarity between the two approaches means that a number of
collisional processes developed for DSMC (e.g. inelastic collisions for internal degrees of freedom),
will likely be applicable to our formulation after a reasonable amount of modifications.
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3.3. Boundary conditions

In this formulation, boundary conditions are imposed by specifying the (upwind) numerical fluxes
at the walls. In this work, we use diffuse wall boundary conditions [2, 19]; this model is by far
the most widely used [3, 19], primarily because it appears to capture the behavior of engineering
surfaces of practical interest quite well.

The diffuse wall boundary condition can be expressed as

f MB+ f d =nwall f wall for c · n̂>0 (20)

where f wall is a (normalized) distribution at equilibrium with the wall, n̂ is the unit normal pointing
into the gas, and the constant nwall is determined by the mass conservation requirement∫

c·n̂<0
(c · n̂)( f MB+ f d)d3c=

∫
c·n̂>0

(c · n̂)(nwall f wall)d3c (21)

In our implementation, we took advantage of the fact that for the low-speed, isothermal flows
presented here, nwall=n0, and did not fully implement (21). For flows were nwall 
=n0, implemen-
tation of (21) is straightforward.

Imposition of other typical boundary conditions is also straightforward. For boundary conditions
that are more complex than diffuse or specular walls, application of boundary conditions is an
area where PDE-based approaches arguably have an advantage over particle-based approaches; in
both cases a fluxal quantity is required, however, in particle approaches, random samples from this
distribution must be generated, while here only the numerical value of the flux at the Gaussian
quadrature points is required.

3.4. Collision integral implementation details

The implementation of the advection terms follows standard approaches [8]. We will thus focus
on the numerical evaluation of the collision integral using Equation (19).

As usual [22] the infinite velocity space is truncated to a finite volume; this truncation does
not cause any problems [7, 22] in low-speed flows provided the volume is sufficiently large. In
our numerical implementation we used a cut-off of 4, i.e. the non-dimensional molecular velocity
ranges from −4 to 4 in each dimension of velocity space.

To simplify the implementation, we will assume that our mesh is a ‘tensor product’ of an
(arbitrary) mesh in physical space and an (arbitrary) mesh in velocity space§§—in other words
we assume that every element is part of a set of elements having an identical extent in physical
space that, as a set, span our truncated velocity space. This simplifies the procedure for finding
the element containing the post-collision velocities in Equation (19) as well as for picking the
pre-collision velocities (because r is the same for the two pre- and two post-collision velocities).

We also note that Equation (16) holds when the integral is taken over an arbitrary region in
physical space (although the integrals must still extend over all velocity space). In particular, this
means that we can independently evaluate (19) for each set of elements sharing a common extent
in physical space; this greatly simplifies the implementation of a parallel code.¶¶

§§ In the authors’ current implementation, a tensor product grid in all dimensions is used.
¶¶The trade-off in this implementation is a smaller degree of variance reduction in cases where the magnitude of

f d varies significantly in physical space.
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Implementing Equation (19) is straightforward, provided an efficient method for generating the
collision parameters {r,c,c1,�} exists. The method used in the present work is outlined below.
As mentioned above, for simplicity, this algorithm assumes that we are computing the collision
integral for a set of cells with the same extent in physical space that, as a set, span velocity space.
We also assume that f MB is only a function of velocity.

We will use a combination of the alias method [23, 24], which is a method for generating a sample
from a discrete distribution in constant time (with a linear setup time), and the acceptance–rejection
method [20] to correctly generate points from our continuous probability distribution.‖‖ We use
the alias method to generate samples from a function that bounds our desired distribution from
above, and then perform acceptance–rejection on these samples to obtain the correct distribution.

We begin with the distribution f MB
1 | f d |/�MB,d .

1. We first generate an upper bound for | f d | in each element; let us denote this by fmax,k where
k indexes the element. As we use tensor products of Legendre polynomials, each shape
function has a maximum magnitude of 1; hence, f dmax,k =∑

i |( f̂ di )k | is an upper bound. (In
general, a tighter upper bound would be preferable.)

2. Loop:

(a) We then use the alias method [23] to randomly pick a cell with a probability proportional
to Ck fmax,k where Ck is the volume of the cell k in velocity space.

(b) A random point in phase space {r,c} within the cell k is chosen using a uniform
probability distribution.

(c) This point is either accepted with a probability | f d(r,c)|/ f dmax,k or rejected and a new
cell is chosen and the process repeats.

3. Generate three Gaussian random numbers to find c1 [20].
4. Generate � on the unit sphere [25].
The distribution | f d1 || f d |/�d,d is slightly more complex because both f d1 and f d have a depen-

dence on r.

1. We use the same upper bound for | f d | in each element as in the previous algorithm.
2. Loop:

(a) We then use the alias method to randomly pick two cells independently with a probability
Ck fmax,k . Let us denote the indices of the two cells selected by k and �.

(b) The vector {r,c,c1} is chosen from a uniform distribution such that c is in cell k, c1 is
in cell � and r is in both cells k and � (recall that we have assumed that all cells have
the same spatial extent).

(c) This (entire vector) {r,c,c1} is accepted with a probability | f d(r,c)|/ f dmax,k×
| f d(r,c1)|/ f dmax,� or (the entire vector is) rejected and a new pair of cells is chosen and
the process repeats.

3. Generate � on the unit sphere.

‖‖A more efficient algorithm for this process could lead to a significant improvement of the overall speed of the
code.
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4. NUMERICAL RESULTS

In this section, we present a sample of the test cases that have been performed to verify the accuracy
(and performance) of the present method. In this work, the test cases are performed in zero and one
spatial dimensions; however, we note that all tests use the (full) three-dimensional velocity space,
meaning that the collision integral formulation is directly applicable to the more general case.
Extension of the DG formulation to higher-dimensional cases is standard. Additionally, modifying
the collision integral formulation to other interaction models (for which the collision cross section �
can be computed, e.g. variable hard-sphere gas [4]) is straightforward.

4.1. Spatially homogeneous case

The convergence properties of the RKDGmethod have been studied extensively [8]. For this reason,
we will focus on the convergence results for the collision integral formulation of Section 3.2 as
this represents the primary difference between the present work and existing RKDG formulations.

We use the analytical solution [26] of the Boltzmann equation for spatially homogenous relax-
ation with Maxwellian molecules∗∗∗ as a test case. Figure 1 shows the convergence for evaluating
[d f /dt]coll as a function of the mesh size for zeroth-order (p0) and first-order (p1) elements. The
error reported in this case is the root-mean-square difference between the calculated and exact
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Figure 1. Error levels for collision integral as a function of number of elements used in each dimension.
The dashed lines illustrate linear and quadratic convergence rates.

∗∗∗Maxwellian molecules are defined such that �∝1/g (the constant of proportionality is immaterial for the present
test case).
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value of the collision integral at a lattice of points in velocity space (approximating an L2 error
norm). This error is normalized by the exact value of the collision integral at c=0.

As expected, with p0 elements we observe a linear convergence rate, while the convergence rate
is approximately quadratic with p1 elements. This suggests that, when higher levels of accuracy
are needed, it will be advantageous to use higher-order elements, even when taking into account
the fact that higher-order elements have more degrees of freedom and a higher computational cost
per element.

Although calculations using p2 elements are certainly possible (as will be shown in the next
section), we were unable to observe the expected asymptotic convergence rate for p2 elements.
This is primarily because the associated error levels are too low and decrease too quickly to accu-
rately resolve with the Monte Carlo integration method used: for example, with only 11 elements
in each dimension we obtain normalized error levels on the order of 5×10−3; the error levels in
the asymptotic regime will be much lower. Our inability to observe the asymptotic convergence
rate does not imply that there is no advantage in using p2 or higher-order elements; to the contrary,
this low error level is precisely what one desires. However, the choice of the optimum polyno-
mial order will also depend on statistical uncertainty considerations; this is discussed further in
Section 4.3. Additionally, note that the difficulty in resolving exceptionally low-noise levels does
not diminish the effectiveness of our Monte Carlo method for its intended purpose—obtaining
low-noise solutions for low-signal flows. As will be shown later, our method is very effective
in obtaining relative statistical uncertainties of significantly less than 1% for arbitrarily small
deviations from equilibrium.

4.2. Flow in a channel

In this section we present comparisons of our results with DSMC solutions of transient shear and
steady pressure-driven flows of a hard-sphere gas of molecular diameter d [dimensional collision
cross section d2/4, dimensional mean free path �0=1/(

√
2�n0 d2)]. The test cases presented

here span the transition regime 0.1�Kn≡�/L�10 where solution of the Boltzmann equation is
required.†††

In the shear flow, the system walls (at x=−L/2 and x= L/2) are impulsively accelerated at
t=0 to a velocity of ±0.1 in the y-direction;‡‡‡ a schematic illustrating the geometry is given in
Figure 2. This flow represents a stringent test of the method, because it involves a discontinuity
in the distribution function propagating into the computational domain.
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Figure 2. One-dimensional flow geometry.

†††The Navier–Stokes description (albeit subject to slip boundary conditions) is valid for Kn�0.1 while for Kn�10,
the effect of collisions is small and the collisionless Boltzmann equation may be used [2, 3].

‡‡‡This velocity was chosen to make comparison with DSMC possible; our method can solve this problem at
arbitrary speeds for the same computational cost.
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All calculations presented in this section were performed using nonuniform elements; refinement
in velocity space near c=0 was used in all cases. For Kn=0.1, refinement in physical space near
the walls was also applied. Additionally, due to the discontinuity propagating in the x-direction,
in these transient flows a finer discretization is used in the cx direction (compared with the cy and
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Figure 3. Velocity profiles for transient shear flow at Kn=10−1 at times t≈1.7,2.8,7.3.
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Figure 4. Shear stress profiles for transient shear flow at Kn=10−1 at times t≈1.7,2.8,7.3.
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Figure 5. Velocity profiles for transient shear flow at Kn=1 at times t≈0.1,0.3,0.5.

0 0.1 0.2 0.3 0.4 0.5

0

0.005

position (x)

s
h

e
a

r 
s
tr

e
s
s
 (

P
)

DSMC

RKDG

Figure 6. Shear stress profiles for transient shear flow at Kn=1 at times t≈0.1,0.3,0.5.

cz directions). These mesh refinements significantly improved the quality of the results, although
no attempt was made to optimize the mesh used.

Figures 3–8 show the velocity and shear stress profiles of transient shear flows at various times
for various Knudsen numbers (Kn). The discretization uses 20 p1 elements in each dimension,
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Figure 7. Velocity profiles for transient shear flow at Kn=10 at times t≈0.006,0.02,0.03.

except for cx which uses 40 p1 elements. The results are compared against fine-resolution DSMC
calculations, and show an excellent level of agreement.§§§ Figures 9 and 10 show velocity and
shear stress profiles for the Kn=1 case using p2 elements. This discretization uses 10 elements in
each dimension, (20 for cx ), and in overall uses 1

16 as many elements to obtain a similar degree
of accuracy as in the p1 case.¶¶¶

Figure 11 shows the steady-state results for pressure-driven flow (using the linearized approach
of [27]) for a Knudsen number of Kn=2/

√
� compared with the previously published results of

[22]. A total of 244 nonuniform p1 elements were used.

4.3. Effect of number of Monte Carlo samples

The use of a Monte Carlo integration method means that there will be some level of statistical
uncertainty inherent in our evaluation of the collision integral. To find the effect of this uncertainty
on the solution we have measured the effect of the number of Monte Carlo samples‖‖‖ used on the
flow velocity and the shear stress uncertainty. To quantify the effect of noise on a hydrodynamic

§§§To ensure accurate results for comparison, the DSMC runs used 400 cells in physical space and a time step
such that a particle with normal velocity c0 would take 10 time steps to cross a cell. While we used a highly
refined DSMC calculation to ensure that our results are correct, we base our performance comparison on a coarser
discretization for DSMC.

¶¶¶Note that a tensor product p2 element has 34 shape functions per element compared with 24 for a p1 element; this
means that in this example the p2 case has about 1

3 the number of degrees of freedom of the p1 case.
‖‖‖Here, the number of samples refers to the total number of updates done in Equation (19) (per Runge–Kutta step).

When using order p elements, this will be 4(NMB+Nd )(p+1)4; there are 4 pre- or post-collision velocities for
each of the (NMB+Nd ) collision events, and the sum in (19) is updated for each of the (p+1)4 shape functions
in the corresponding elements.
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Figure 8. Shear stress profiles for transient shear flow at Kn=10 at times t≈0.006,0.02,0.03.
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Figure 9. Velocity profiles for transient shear flow at Kn=1 using p2 elements at times t≈0.1,0.3,0.5.

quantity Q we use the relative statistical uncertainty EQ =�Q/Q̄, where �Q is the standard
deviation characterizing the statistical distribution of Q, and Q̄ is a characteristic value. (In the
following figures, an average of EQ over the domain is typically given.)
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Figure 10. Shear stress profiles for transient shear flow at Kn=1 using p2 elements at times t≈0.1,0.3,0.5.
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Figure 12. Scaling of relative statistical uncertainty in the flow velocity and shear stress
with number of Monte Carlo samples per collision time per degree of freedom. Results

obtained using 164 p0 and p1 elements.

More specifically, we perform a steady-state shear flow calculation (using a Chapman–Enskog
distribution for boundary conditions to minimize edge effects) and measure the mean standard
deviation of the flow velocity and shear stress over a set of nodes in physical space.∗∗∗∗ These
values are normalized by the boundary velocity and the theoretical value for the shear stress,
respectively, and will be referred to as the relative statistical uncertainties. All tests in this section
are performed for Kn=0.1; for simplicity, these tests use a uniform mesh.

Figure 12 shows the dependence of the velocity and shear stress relative statistical uncertainties
on the number of Monte Carlo samples per collision time†††† per degree of freedom for p0 and
p1 elements using the same‡‡‡‡ mesh. The asymptotic convergence rate appears to be approaching
N−1/2, which is expected of Monte Carlo integration. In other words, the statistical uncertainty
in the collision integral evaluation seems to have an (asymptotically) proportional effect on the
statistical uncertainty of the hydrodynamic quantities of interest. When the number of samples
is small, this trend no longer holds; in fact the method becomes unstable if too few samples
are used.

Also, note that in both cases, higher-order methods require fewer samples per degree of freedom
to obtain a given uncertainty level (although higher-order methods require more total samples

∗∗∗∗Note that the nodes in the middle of the domain will typically have a smaller variance in these quantities; this
is because f d is smaller there as the mean flow velocity is closer to zero; hence, our choice for f MB is a better
approximation to the distribution function. This could be alleviated, although at the cost of a slightly more involved
implementation than that discussed in Section 3.4.

††††The statistical uncertainty is not primarily affected by the number of samples per time step, but rather than the
number of samples per collision time.

‡‡‡‡As opposed to, for example, meshes that would lead to the same degree of discretization error.
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for a given degree of uncertainty). In cases where extremely low levels of statistical uncertainty
are required, this consideration might affect the choice of polynomial order and discretization
used.

We can also see that the relative statistical uncertainty in the shear stress is typically an order
of magnitude larger than the uncertainty in the velocity. Both, however, are very small; typical
values are of O(10−3) and O(10−2), respectively, which as shown in the previous comparisons
of Figures 3–11, are essentially imperceptible.

Figure 13 shows how the number of elements used affects that level of relative statistical
uncertainty for p1 elements. We see that, when using more elements, fewer samples are needed
per degree of freedom to obtain a fixed degree of relative statistical uncertainty (although the total
number of samples needed is larger when more elements are used).

We have not yet touched on perhaps the most important aspect of our method for evaluating
the collision integral: its performance for low-speed flows. Figure 14 illustrates how the degree
of relative statistical uncertainty is affected by the characteristic flow velocity (i.e. deviation
from equilibrium). Two wall velocities (±0.1 and ±0.01) are shown; the figure shows that the
relative statistical uncertainty does not change significantly between these two cases. This is
in sharp contrast to DSMC, for which lower-flow velocities are associated with much higher
relative statistical uncertainties [6]—for the same number of samples the level of relative statistical
uncertainty in a DSMC calculation would have increased by a factor of 10, while the number of
samples required to bring the relative statistical uncertainty to the same level would have increased
by a factor of 100.
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Figure 13. Scaling of relative statistical uncertainty in flow velocity and shear stress
fluctuations with number of Monte Carlo samples per collision time per degree of

freedom. Results use 84 and 164 p1 elements.
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Figure 14. Effect of varying wall velocities on relative statistical uncertainty for the present method.

The superior performance scaling (with decreasing velocity) of the present method means that,
below a certain characteristic velocity, the present method will be more efficient than DSMC.
Precisely quantifying this crossover point is difficult, and will be implementation and problem
dependent. However, work done to date suggests that this crossover point occurs at a wall velocity
on the order of 0.1. More quantitatively, in our present implementation,§§§§ time integrating a
tensor product p1 calculation with 40×203 elements at Kn=0.1 for 7.5 collision times (i.e. the
calculations shown in Figures 3 and 4) takes approximately 300MB of storage and about 9 h
of CPU time on a (single) 2000MHz AMD Athlon 64 to obtain essentially ‘noise-free’ results;
performing a similar calculation (same statistical uncertainty) using DSMC would take weeks. We
further note that calculations at larger Knudsen numbers typically take less computational time
due to the diminished effect of collisions.

Our preliminary results show that the effect of the number of Monte Carlo samples on the
average value of the local flow velocity and shear stress is small—on the order of 1% for the shear
stress over the range shown in Figure 12 and essentially negligible for more than 50 samples per
collision time per degree of freedom. The effect on the flow velocity is even smaller.

Finally, we note that in the present method, only a relatively small number of samples are
necessary per collision time per degree of freedom to obtain small relative statistical uncertainties.

§§§§The present code was expressed in C++, making use of the Lapack++ and Boost libraries. A more efficient
implementation, perhaps utilizing existing finite element libraries, is certainly possible; the performance numbers
given here are intended to give the reader a general sense of the computational cost associated with this
method.
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Figure 15. Effect of limiting on velocity profile for collisionless shear flow.

As the time step is typically significantly less than a collision time, even fewer samples are
needed per time step; this makes the present method for evaluating the collision integral extremely
computationally efficient.

4.4. Limiting

In general, RKDG methods require the use of a numerical limiter to ensure stability in the presence
of discontinuities [8], although we have not found this necessary for the (linear) flux function of
the Boltzmann equation. However, the lack of a flux limiter leads to a non-physical overshoot in
the flow velocity and other hydrodynamic quantities at very short timescales due to the propagating
discontinuity created by the impulsive wall acceleration in our shear flow problem. An example
is shown in Figure 15; in this case collisionless shear flow was simulated both without a flux
limiter and with the flux limiter described in [8] (the flux limiter was only used for the initial 10
time steps, during which time the propagating discontinuity has the sharpest effect on the velocity
profile).

Without the flux limiter, there is a non-physical overshoot apparent at short times that disap-
pears at longer timescales. Introducing a flux limiter removes this overshoot. However, we observe
that, except at very short timescales, we closely match the analytic results either with or without
the flux limiter (to the point where the three different solutions plotted are essentially indis-
tinguishable). Discerning the full effect of slope limiting on the present method of solving the
Boltzmann equation will require further research, although our initial exploration suggests that,
while the use of a slope limiter is not necessary, in certain cases it can give qualitatively better
results.
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5. CONCLUSION

We have presented a high-order method for solving the nonlinear Boltzmann equation that has
a computational efficiency advantage over traditional Monte Carlo methods (such as DSMC) for
low-signal flows.

The most important ingredient of the present work is a variance-reduced Monte Carlo method for
evaluating moments of the collision integral, which enables the solution of the Boltzmann equation
using an RKDG formulation. The resulting scheme exhibits low relative statistical uncertainty that
is independent of the magnitude of the deviation from equilibrium, enabling essentially noise-free
calculations at arbitrarily low-flow speeds or, more generally, arbitrarily low signal.

The method was validated for spatially homogeneous and one-dimensional (in space) problems.
Our results indicate that engineering accuracy can be obtained using relatively coarse grids.

This last feature partially alleviates what is, perhaps, the most important disadvantage of the
current method, namely the fact that the number of elements required scales as MD+3, where M
is the number of elements in one dimension. This scaling means that the current formulation and
implementation (without the benefit of decades of development) can achieve essentially noise-free
solutions to two-dimensional (D=2), low-signal problems using current personal computers or
small clusters [28]; three-dimensional problems will be more costly but feasible. This can be put in
context by noting that for essentially noise-free solutions of low-signal problems DSMC requires
massively parallel computing resources even for D=2 [29]. At the same time, we expect DSMC
to hold an advantage over the current formulation in high-signal flows.

As noted in the Introduction section, the present formulation offers the possibility of steady-state
formulations (rather than explicit integration to steady state), which have the potential to provide
significant computational savings for problems that evolve at timescales that are much longer
than the collision time, and make this method even more competitive compared with time-explicit
particle methods.

Extensions to multispecies and chemically reacting flows will be considered in the future.
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